一、串联谐振的低压电流怎么算?
计算串联谐振的公式为Z=√R2+XC-XL2=R。串联谐振在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压与其中电流位相一般是不同的。
如果调节电路元件的参数或电源频率,可以使它们位相相同,整个电路呈现为纯电阻性。电路达到这种状态称之为谐振。在谐振状态下,电路的总阻抗达到极值或近似达到极值。
研究谐振的目的就是要认识这种客观现象,并在科学和应用技术上充分利用谐振的特征,同时又要预防它所产生的危害。按电路联接的不同,有串联谐振和并联谐振两种。
在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振(也称为电压谐振)。当电路发生串联谐振时,电路的阻抗Z=√R2+XC-XL2=R,电路中总阻抗最小,电流将达到最大值。
扩展资料:
串联谐振的特点:
1、所需电源容量大大减小。系列串联谐振试验装置是利用谐振电抗器和被试品电容产生谐振,从而得到所需高电压和大电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q为品质因素)。
2、设备的重量和体积大大减小。串联谐振电源中,不但省去了笨重的大功率调压装置和普通的大功率工频试验变压器,而且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积大大减小,一般为普通试验装置的1/5~1/10。
3、改善输出电压波形。谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波,有效地防止了谐波峰值引起的对被试品的误击穿。
4、防止大的短路电流烧伤故障点。在谐振状态,当被试品的绝缘弱点被击穿时,电路立即脱谐(电容量变化,不满足谐振条件),回路电流迅速下降为正常试验电流的1/Q。
而采用并联谐振或者传统试验变压器的方式进行交流耐压试验时,击穿电流立即上升几十倍,两者相比,短路电流与击穿电流相差数百倍。所以,串联谐振能有效地找到绝缘弱点,又不存在大的短路电流烧伤故障点的忧患。
5、不会出现任何恢复过电压。被试品发生击穿闪络时,因失去谐振条件,高电压也立即消失,电弧立刻熄灭,装置的保护回路动作,切断输出。
二、铁磁谐振产生原因?
铁磁谐振产生的条件一般有:
1、中性点非有效接地系统;
2、非线性电感元件和电容元件组成振荡回路。回路线性状态时的自振频率小于某此低频谐振频率,当铁芯饱和而电感减小时,回路自振频率增加,恰好等于某此低频谐振频率;3、振荡回路中的损耗足够小,所以谐振实际发生在系统空载或轻载时;
4、电感的非线性要相当大;
5、有激发作用时,即系统有某种过电压、电流的扰动,如跳、合闸,瞬间接地、瞬间短路等。
动作判据:
1、谐振判据:17HZ谐波电压≥17V,25HZ谐波电压≥25V,150HZ谐波电压≥33V.
2、接地判据:基波电压≥30V。
3、过压判据≥120V。
铁磁谐振发生后常常引起电压互感器(PT)烧毁、爆炸等恶性事故。原因是电力系统中有大量的储能元件,如电压互感器、变压器、电抗器等电感元件,电容器、线路对地电容、断路器的断口电容等电容元件。这些元件组成了许多串联或并联的振荡回路。在正常的稳定状态下运行时,不可能产生严重的的振荡。但当系统发生故障或由于某种原因电网参数发生了变化,就很可能发生谐振。例如在中性点非有效接地系统,其中一相断线接地,受电变压器和相间电容;电压互感器和线路对地电容;空载变压器和空载长架空线路电容所形成的振荡回路,都有可能发生谐振。
谐振常常引起持续时间很长的过电压。电压互感器一类的电感元件在正常工作电压下,通常铁芯磁通密度不高,铁芯并不饱和,如在过电压下铁芯饱和了,电感会迅速降低,从而与电容产生谐振,也就是常说的铁磁谐振。铁磁谐振不仅可在基频(50HZ)下发生,也可在高频(170HZ)、低频(17HZ,25HZ)下发生。
正常运行时,电压互感器开口三角的电压(3U0)理论上是0V,在实际运行中一般也不会超过10V。当系统发生单相接地时,3U0将迅速升高,达到30到120V,形成过电压。当系统上电时,由于三相不同期等原因,会在电压互感器中产生很大的谐波电流,导致互感器内部铁芯饱和了,造成二次侧的波形发生畸变,当畸变足够大时,就形成了铁磁谐振。
三、变压器谐振原因?
谐振过电压产生的原因 产生工频过电压的主要原因是:空载长线路的电容效应,不对称接地引起的正序、负。
由于变压器各段绕组的等值回路为电感、电容与电阻,这样的回路具有固定的自然谐振频率,为了减小高频变压器体积和重量,电路谐振频率一般选为2 kHz以上。如果开关器件允许,一般认为谐振频率越高越好。
四、发生串联谐振时电容与电感的连接?
并联谐振时电感和电容上的电压等于电源电压,谐振电流高于总电流许多倍。串联谐振时电感或电容上的电压才高出电源电压很多倍。有的串联谐振电路看上去很像并联谐振,但其实它是串联谐振电路。判断是串联还是并联谐振的关键是看电源或信号源是送到哪两端的。
比如收音机和电视机的中频放大电路,在中频变压器的初级,信号是加在LC并联电路两端的,是并联谐振
五、交流变压器通电后嗡嗡作响?
变压器的声音异常无外乎以下几点:
1,当有大容量的动力设备起动时,负荷变化大,使变压器声音增大。如变压器带有电弧炉、可控硅整流器等负荷时,由于有谐波分量,所以变压器的声音也会变大。
2,过负荷:使变压器发出很高而且沉重的“嗡嗡”声。
3,个别零件松动:如铁芯的穿芯螺丝夹得不紧,使铁芯松动,变压器发出发出强烈而不均匀的“噪音”。
4,内部接触不良,或绝缘有击穿,变压器发出放电的“劈啪”声。
5,系统发生铁磁谐振时,变压器发出粗细不匀的噪音。
6,系统短路或接地,通过很大的短路电流,使变压器发出很大的噪音。
“看到变压器出线接头处闪火花 而关了电阻炉变压器就正常了”,这是明显接线端子的松动而引起的,应及时停电处理好接触不好的部位。
另外变压器正常运行时,一般有均匀的嗡嗡声,这是由于交变磁通引起铁芯振动而发出的声音。如果运行中有其它声音,则属于声音异常。
六、在一个小变压器初级串连一个电容对变压器的稳定有没有影响?
这就是铁磁谐振变压器,可能引起铁心饱和,产生稳压效果,正规要加漏磁部分。
电容器的容量与变压器的结构、圈数等等,决定了整个性能。
有串联谐振方式与并联谐振方式。
本人在设计制造中国第一台多圈电位器测试台的时候,亲自设计、制造了三种稳流装置用于噪音测量;三极管稳流、电子管稳流、铁磁谐振变压器稳流。这是对七专产品测试的设备。
铁磁谐振变压是1940年流行的设计,现在有电子稳压、稳流装置,特别是有了开关稳压器集成电路,就没有必要采用这种笨重、效率低的稳定方式。
这是一种参数稳定装置。
七、谐振电压特征?
一、线性谐振过电压
1) 参与谐振的各电气参量均为线性。
2) 谐振发生在电网自振频率与电源频率相等或相近时。
3) 多为空载线路不对称接地故障的谐振、消弧线圈补偿网络的谐振和某些传递过电压的谐振等。
二、铁磁谐振过电压
1) 与电容组成谐振回路的电感参数作周期性变化,变化频率一般为电源频率的偶数倍。
2) 谐振所需能量由改变电感参数的原动机供给,它不仅可以补偿回路中电阻的损耗,并且使回路的储能愈积愈多,保证了谐振的发展。
3) 谐振过电压和电流理论上能趋于无限大。但是由于实际上常受电感磁饱和的影响,使回路自动偏离谐振条件,使过电压不致无限增大。
三、参数谐振过电压
1) 谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
2) 谐振频率可以等于电源频率(基波共振),也可为其简单分数(分次谐波共振)或简单倍数(高次谐波共振)。
3) 在一定的情况下可自激产生,但大多需要有外部激发条件。回路中事先经历过足够强烈的过渡过程的冲击扰动。
4) 在一定的回路损耗电阻的情况下,其幅值主要受到非线性电感本身严重饱和的限制。
八、雷瑞洛伦兹谐振仪原理?
串联谐振试验装置是运用串联谐振原理,利用励磁变压器激发串联谐振回路,调节变频控制器的输出频率,使回路电感L和试品C串联谐振,谐振电压即为加到试品上电压。
变频谐振试验装置广泛用于电力、冶金、石油、化工等行业,适用于大容量,高电压的电容性试品的交接和预防性试验。 很多人在做变频串联谐振试验的时候并不知道电抗器怎样选择才是最好的,接下来给大家分享选择电抗器主要从以下几个方面分析。
1、额定交流电流的选择: 额定交流电流是从加热角度设计的电抗器的长期工作电流,同时要考虑足够的高阶谐波分量。也就是说,实际输出的电抗器电流是逆变器电机负载的输出电流。
2、电压降: 当电压降50 hz,对应真实额定电流电抗器两端线圈真实电压降。通常电压降约为4V~8V。
3、对应额定电流的电感量: 电抗器的额定电感也是一个重要的参数!如果电感不合适,将直接影响额定电流下电压降的变化,从而引起故障。
电感的大小取决于交叉输出电抗器的电感由电缆在额定频率范围内的长度决定,然后根据电机的实际额定电流选择铁心和导线的截面积来确定实际电压降。