一、变压器保护电流计算公式?
和输出电压U有关,根据变压器的量W,其输出的最大电流Im=W/U。
二、20mw变压器保护计算公式?
为进一步规范供电系统继电保护整定计算工作,提高保护的可靠性快速性、灵敏性,为此,将常用的继电保护整定计算公式汇编如下,仅供参考。有不当之处希指正:
1、 瓦斯保护:
作为变压器内部故障(相间、匝间短路)的主保护,根据规定,800KVA以上的油浸变压器,均应装设瓦斯保护。
(1) 重瓦斯动作流速:0.7~1.0m/s。
(2)轻瓦斯动作容积:Sb<1000KVA:200±10%cm3;Sb在1000~15000KVA:250±10%cm3;Sb在15000~100000KVA:300±10%cm3;Sb>100000KVA:350±10%cm3。
2、差动保护:作为变压器内部绕组、绝缘套管及引出线相间短路的主保护。包括平衡线圈I、II及差动线
圈。
3、 电流速断保护整定计算公式: (1)动作电流:Idz=Kk×I(3)dmax2
1、过流一段保护需要确定两个参数,1,上级地变给出的短路容量;2,过流时跳闸时间。这两点,需要相当地供电部门申请获得,但一般情况下,人家会要求你交钱由他们计算。因为,你的跳闸时间大于他们的时间,会引起越级跳闸,他们跳闸将会是大面积停电,所以,工厂企业高压保护定值一定要供电局来算就是这个道理。
2、还需要计算一个保护定值参数,就是变压器差动保护定值,也是保护变压器的重要参数
三、南瑞变压器差动保护试验公式详解?
南瑞变压器差动保护试验公式是指在变压器差动保护装置的试验中所使用的公式。该公式主要用于检测变压器差动保护装置的性能和可靠性,以保证变压器的安全运行。南瑞变压器差动保护试验公式包括了差动电流、差动电压、差动功率等多个参数的计算公式。其中,差动电流的计算公式为:Ia+Ib+Ic-Id-Ie-If,差动电压的计算公式为:Va-Vb-Vc+Vd+Ve+Vf,差动功率的计算公式为:Pd=P1+P2+P3-P4-P5-P6。通过对这些参数的计算和分析,可以判断变压器差动保护装置的工作状态是否正常,从而及时发现和排除故障,确保变压器的安全运行。
四、变压器比率差动保护定值计算公式?
Id>Icd(IrIcd+k*(Ir-Ird)(Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/,Y/Y/,Y//,Y形接线的二次电流与形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为: A=(A'—B')/1.732/KhpB=(B'—C')/1.732/KhpC=(C'—A')/1.732/Khp 其中A,B,C为补偿后的二次电流(即保护装置实时显示的电流),A',B',C'为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流.Khp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1.
五、保护电阻公式?
诠释绝缘电阻的定义
中文名称:绝缘电阻
英文名称:insulation resistance
名词定义:绝缘物在规定条件下的直流电阻。加直流电压于电介质,经过一定时间极化过程结束后,流过电介质的泄漏电流对应的电阻称绝缘电阻。注意:使用电笔时一定不可以将其中的绝缘电阻替换成普通电阻 。
计算公式:R=Rv[U极间/(U++U-)-1]×10
Rv为表计电阻,U极间为表计测得电阻,U+为正极对地电压,U-为负极对地电压。
六、1000kva变压器保护定值计算公式?
1000KVa变压器速断保护定值的计算方法如,根据变压器功率计算公式S=√3IU,S为变压器的视在功率,I为变压器的电流,U为变压器的电压。则I=S/√3U,变压器的速断保护值可以设置在高压侧,也司以设置在低压侧,高压侧为额定电流值的2信,低压侧保护值等于额电流值,若设置在低侧则电流I=S/√3U,电压取0.4KV,则速断保护整定电流值为
I=1000/√3X0.4=1443.4A
七、变压器保护的发展及展望
变压器保护的发展及展望
随着电力系统的不断发展,变压器作为电力传输和分配的重要设备,扮演着至关重要的角色。然而,变压器也面临着各种潜在的故障和危险,因此对其保护措施的研究和发展变得尤为重要。本文将探讨变压器保护的发展历程,并展望未来的发展趋势。
1. 变压器保护的重要性
变压器作为电力系统的核心设备之一,其正常运行对于电网的安全和可靠性至关重要。然而,由于变压器所具有的复杂内部结构和高压电气设备的特殊性,其容易受到各种外界因素的干扰和损害,如短路、过载、过压、绝缘损坏等。这些故障如果得不到及时和有效的保护,将导致电力系统的不稳定甚至崩溃,给正常的电力供应造成严重影响。
因此,变压器保护的重要性不言而喻。通过实施合理有效的保护措施,可以及时发现和隔离变压器故障,防止故障扩大和蔓延,保证电力系统的稳定运行,提高供电的可靠性和质量。
2. 变压器保护的发展历程
随着电力系统的发展和科技的进步,变压器保护技术也经历了多个阶段的演变。下面将对其发展历程进行简要介绍。
2.1 传统的保护方式
早期的变压器保护主要采用熔断器、过电流继电器、差动继电器等传统的电气保护设备。这些设备具有简单可靠的特点,能够有效地对变压器进行保护。然而,由于传统保护设备的局限性,无法满足对变压器保护的更高要求。特别是在大电流和高压差动保护方面,传统的保护装置容易出现误动作和盲动作的问题。
2.2 微机继电保护装置的应用
随着微机技术的快速发展,微机继电保护装置逐渐被引入到变压器保护领域。该装置通过将传感器和处理器集成在一起,实现了对变压器故障的精确诊断和快速响应。与传统保护装置相比,微机继电保护装置具有更高的可靠性和稳定性,可以提供更多的保护功能,并能实时监测变压器的运行状态。
此外,微机继电保护装置还具有便捷的维护和管理特性,并支持网络通信和远程监控,方便管理人员对变压器的实时监测和远程控制。这大大提高了变压器的运行效率和管理水平。
3. 变压器保护的展望
随着电力系统的智能化和信息化建设的推进,变压器保护技术也呈现出新的发展趋势。
3.1 智能化保护
智能化保护是变压器保护技术的未来发展方向。通过应用先进的传感器技术、智能诊断算法和云计算等新技术手段,可以实现对变压器故障的智能感知和预测,并能根据故障类型和程度自动调整保护策略和参数设置。
3.2 统一管理平台
随着变压器数量的增加和分布的复杂化,需要建立统一的变压器保护管理平台,通过集中管理和控制,实现对全网变压器的统一监测和控制。这将提高变压器保护的整体水平,降低故障率,提高供电的可靠性。
3.3 多元化保护策略
未来的变压器保护将更加注重多元化保护策略的应用。除了传统的差动保护、过电流保护和过载保护等基本保护措施外,还将加强对绝缘状态、温度状态、湿度状态等变压器内部参数的监测和保护,从而实现更全面、细致的变压器保护。
3.4 新材料和新技术的应用
在变压器保护领域,新材料和新技术的应用也是未来的发展方向。例如,纳米材料的应用可以提高变压器的绝缘性能和热稳定性;人工智能和大数据分析技术可以提供更精准的故障诊断和预测。这些新材料和新技术的应用将为变压器保护带来更多的可能性和机遇。
4. 结论
变压器保护的发展和展望不仅代表着电力系统技术的进步,也是电力工程师不懈努力的结果。通过不断研究和创新,变压器保护技术取得了长足的进步,并在电力系统的稳定运行中发挥着重要作用。
未来,随着电力系统的不断发展和对供电可靠性要求的提高,变压器保护技术将继续迎来新的挑战和机遇。我们有理由相信,在科技的推动下,变压器保护技术将不断创新和发展,为电力系统的安全稳定运行提供更加可靠和高效的保障。
参考文献:
八、变压器公式计算公式?
计算变压器的功率:
变压器功率 = 输出电压 X 输出电流
单相变压器功率由用电总功率*120%获得(效率按80%计算)。
三相变压器功率计算如下(以相电压220V,线电压380V为例):
1、三相额定功率=1.732*额定电流*额定线电压(380V)=3*额定电流*额定相电压(220V)。
2、三相功率不同,按最大功率的一相乘3计算,如,A相9KW,B相10KW,C相11KW,P=3*11=33KW。
3、变压器功率因素一般为0.8(也有0.7的),则,变压器总功率=33/0.8=41.25KW。
九、变压器保护对象?
(1)瓦斯保护.用于反映变压器油箱内的各种故障以及油面的降低.(2)纵差保护.用于反映变压器绕组、套管及引出线上的故障.(3)相间过电流保护.根据运行条件,可以引入复合电压闭锁和方向闭锁,根据整定的要求,可以反映变压器内外相间短路故障.(4)阻抗保护.当相间过电流保护不满足灵敏度要求时,可以采用阻抗保护.(5)零序电流保护和零序电流方向保护.根据整定的方向,可以反映变压器内外接地短路故障.(6)过负荷保护.反映变压器过负荷状态,动作于信号或跳闸.(7)过励磁保护.反映因过压或频率降低而引起的过励磁状态,动作于信号或跳闸.(8)其他保护.反映如压力释放、温度升高等特殊状态的保护.
十、变压器气体保护的保护范围?
变压器气体保护范围是变压器的整体充油部分都在保护范围。