一、汽车散热风扇运行时电压降低?
汽车散热风扇运行时出现电压降低属于正常现象。汽车蓄电池在启动的时候,如果电压值不低于9.5伏或者19伏以下,那么蓄电池没有问题,最好是达到9.5伏以上。
空调的功率总体上看来不大,但是在低速和起动阶段,所占用的比例也是相当可观,很容易感到动力明显下降。但是在中高速阶段,其反应就没有那么明显。汽车的发动机储备功率越大,空调的影响越不明显,反之发动机越是小排量,空调的影响越容易被感受到。
二、如何降低变压器次级电压?
一般的电力变压器,都可以调整档位的(通常是5个档)。输入电压不变的情况下,不同档位次级输出电压高低不同。
打开变压器,减少次级匝数。 加上合适的稳压块降压
电力变压器通常有可调抽头,调节它就可降低次级电压。如果是在制造阶段,则可增加原级绕组匝数或者降低次级绕组匝数
三、变压器电压降低原因分析?
线路压降造成的变压器与负载之间的线路是有电阻R的,线路电流I,线路压降U=I*R当负载增加时,电流I是增加的,所以线路压降U也是增加的而变压器的输出是不变的(变化很小,可以忽略,因为原边是高压)所以,加到负载上的电压是减小的。
四、开关电源怎样降低电压?
开关电源的降压包含两个地方。1,变压器的初次极匝比。2,功率MOS开关的占空比。
通过匝比将电压降低到一定值,再通过MOS调节占空比将电压稳定在5V左右。
注意:降压主要是匝比实现的,占空比主要是稳压作用。另外,为了使MOS开关的速度尽量均匀,占空比已0.45为基准点,左右变化,这样MOS导通和关断的间隔就不会相差太大,否则要是0.8的占空比的话,留给关断的时间只有0.2,变化就很快,刚关断瞬间就导通了,这样工作会损坏MOS管。另外还有一个原因,如果占空比大于0.5,相应的匝比就会更大,反射电压就会变大,初级MOS管的电压就会更高,MOS应力就高了,初级MOS的耐压基于成本考虑,一般是600或者650以下。所以,我们会以占空比0.45为基准,计算匝比时,也将0.45计算在内,比如将220V输入电压按匝比降到10V,再算上占空比0.45,就是5V了。
电源设计的重点在变压器上,因为其设计的地方多,可操作空间很大,匝比的选择也要考虑到初级MOS管的Vds,这里不是说尖峰电压,而是反射电压,输入电压加反射电压的电压值也要控制,不能太高,而反射电压就跟匝比有关系,所以要控制匝比,不能让反射电压太高。当然这是在满足降压要求的情况下来设计匝比,要是匝比必须那么大,不然就不满降压,那就要换MOS,换用耐压更高的MOS。当然MOS耐压高,相应价格也高。
五、电源偏相电压要降低吗?
答:
电源偏相电压可能会降低的。
说的是三相电压,一般电力三相电压不平衡在5%之内。
至于不平衡的危害,三相电压不平衡轻则降低线路和配电变压器的供电效率,重则可引起中性点偏移,加大电压偏移,增大中性线电流,只有三相阻抗平衡,才能保证低压漏电总保护良好运行,减少人身触电伤亡事故。
六、开关电源降低输入电压范围?
电路设计需要按照最大输入电压和最小输入电压设计。例如脉冲的占空比,在输入电压最小时最大,设计时必须保证最小输入电压时仍能不超出芯片所能提供的最大占空比。变压器设计也是一样,最大和最小输入电压都要满足输出的要求。
一般地说,输入电压变化范围大,无论是管子变压器滤波器,都要比较大的余量。
七、变压器饱和导致输出电压降低?
原因很多啦 1)负载增大后,电流增加,线损增加了 2)负载增大后,温度也升高了,线损也会增加 主要原因还是线路压降增大,导致的 可以这样理解 变压器的输出电压是一定的,但是线路的电阻和负载是串联使用的 线路电阻的电压 + 负载电压 = 变压器输出电压 U=IR 当负载增大,I增大,导致线路电阻的电压增大,假设变压器输出电压是不变的 则,负载电压是降低的 (实际上,变压器因电网的线损增加,输入电压会降低,输出电压也会降低)
所以,用于线路上的电线,不光要考虑其载流能力,还要考虑线路长度、压降
八、如何降低变压器的空载电压?
由于空载损耗是变压器的重要参数,仅占变压器总损耗的20%~30%,要降低空载损耗,必须要降低铁心总量、单位损耗和工艺系数。降低空载损耗的主要方法如下:
(1)采用高导磁硅钢片和非晶合金片。普通硅钢片厚度0.3~0.35 mm,损耗低,可用0.15~0.27 mm。同时,若采用阶梯叠积,则又可减少铁损8%左右。用激光照射、机械压痕和等离子处理可使高导磁硅钢片损耗更低。而非晶合金片和按速冷原理制成的含硅量为6.5%的硅钢片,其涡流损耗部分比一般高导磁硅钢片小。
(2)减少工艺系数。工艺损耗系数与硅钢片材料、冲剪设备是否退火、夹紧程度等诸多因素有关。对冲剪设备的刀具精度、装刀合理和调整也很重要。
(3)改进铁心结构。铁心不冲孔,不绑扎玻璃粘带,端面涂固化漆,相间铁轭用高强度钢带绑扎。心柱两侧连接上下夹件的拉板用非磁性钢板。对大容量铁心片不涂漆处理,提高填充系数和冷却性能。用强压工装和粘胶使铁心两轭成为一个坚固、平整、垂直精度高的整体。减少铁心搭接宽度可降损,搭接面积每减1%,空载损耗会降0.3%。铁心中混入不同牌号硅钢片会耗能,故应少混或不混片。
(4)减少铁心窗口尺寸。将绕组不变匝绝缘(厚度)改成变匝绝缘,如将一台120 000/110变压器根据冲击电压分布,高压绕组首端和调压段的匝绝缘厚度为1.35 m m,其他段为0.95 mm,结果因缩小窗口尺寸后,降铁重1.67%。在安全前提下,合理缩小高、低间主空道距离、降低饼间油道、缩小相间距离、加强绝缘处理(加角环、隔板等),绕组采用半油道结构,就缩短了心柱中心距,减小了铁心重,也降铁损。
九、运行时电压过高对变压器有何影响?运行时电压?
规程规定运行中的变压器正常电压不得超过额定电压的5%,电压过高会使铁芯产生过励磁并使铁芯严重饱和,铁芯及其金属夹件因漏磁增大而产生高温,严重时将损坏变压器绝缘并使构件局部变形,缩短变压器的使用寿命。所以,运行中变压器的电压不能过高,最大不得超过额定电压的10%。 变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头.例: T01, T201等。
十、24v电源接入负载电压降低?
24V并不现实,因为一般主板使用ATX电源,最高一组输出也只有12V,难道还要再在主板上做DC/DC升压到24V给USB供电?
其次,USB供电的设备一般是数码产品,比如U盘等等,它们其实内部芯片的工作电压都很低,基本上就是5V、3.3V、2.5V、1.8V等等电压标准,如果供电电压提高,就意味着这些设备中需要额外的DC/DC或者LDO电路降压,而这些电路也大体上是压差越大效率越低,所以提高供电电压,在除快速充电之外的用途上没有意义,反而是个累赘。
工作电流方面,USB 3.0之前是0.5A,其实对于当时大部分负载来说已经够用,并且低压大电流对于供电来说不是什么好事情,电流流过电阻时会使电阻分压,如果USB线缆的电流很大,USB线缆的电阻就非常敏感了,电阻越大负载那边电压降低就越明显,220V的电压降个2~3V对负载来说区别不大,5V电压降个2~3V那就没有意义了。“只有2A”在电压“只有5V”的情况下是安全的,但如果电压很高,2A的电流足以致命的,一般认为0.1A直流电流流经人体1秒钟就有致死危险,USB供电之所以安全是因为人体电阻不会小到那种程度,5V情况下不可能有超过0.1A的电流流经人体。另一方面,如果额定电流很大,比如支持10A的供电能力,那么整个接插件设计上就要满足10A的载流量,金属触点的面积、弹力都要明显增大,这会影响使用体验。