主页 > 变压器单端推挽区别?

单端推挽区别?

一、单端推挽区别?

单端和推挽是两种不同的电子电路输出模式。

1. 单端输出:单端输出是指电路中只有一个输出信号引脚,通常是通过一个开关器件(如晶体管)来控制输出信号的电平。在单端输出中,输出信号的电平可以是高电平或低电平,代表不同的逻辑状态或电压值。单端输出通常用于简单的开关和驱动电路中。

2. 推挽输出:推挽输出是指电路中同时存在两个输出信号引脚,一个用于产生高电平,另一个用于产生低电平。推挽输出通常通过两个互补的开关器件(如NPN和PNP晶体管)来实现。其中一个开关器件用于将输出信号拉高,另一个开关器件用于将输出信号拉低。推挽输出通常用于需要提供较大电流或驱动负载的电路中,如驱动电机或其他高功率设备。

区别:

- 单端输出只有一个输出信号引脚,而推挽输出有两个输出信号引脚。

- 单端输出只能提供一个电平状态,通常是高电平或低电平。推挽输出可以提供两个电平状态,一个高电平和一个低电平。

- 推挽输出具有更高的驱动能力,可以提供更大的电流和功率输出,适用于驱动负载或需要较大电流的应用。

- 单端输出通常用于简单的开关和驱动电路,而推挽输出通常用于需要提供较大电流或驱动负载的电路。

需要根据具体的应用场景和需求选择适合的输出模式。

二、推挽变压器可以用单端机吗?

推挽变压器通常用于双端机中,通过将两个独立的信号合并成一个完整的信号来传输。因此,单端机通常不使用推挽变压器。在单端机中,信号只有一个输入端,因此不需要将两个独立的信号合并。通常使用其他类型的变压器或电感器来传递信号。当然,如果单端机需要使用推挽变压器,可以通过一些特殊的设计来实现。但是这并不是常规的使用方式,也不是推荐的做法。

三、推挽变压器怎么设计?

小功率

的话,前面的Merlin马先生已经说了,各式各样的驱动芯片,基本上来说没有特殊要求的话,都能够满足需求,配一个合适的G极驱动电阻,以及防止静电电荷等引起开关管误通的DS并联电阻。然后了解一下驱动芯片的驱动信号输出级,一般推挽输出,为了加速MOS的关断可以给驱动电阻反并联一个二极管,二极管一般根据你的开关频率选择,反向恢复时间注意一下就好。

大功率

情况下的话,有驱动模块,这是最简便的方法。还有用于驱动的变压器,X宝上面貌似就现成的产品,根据需要的驱动功率选择即可。这里面的话,如果驱动部分驱动功率过小,米勒效应就会比较明显,一旦出现基本上选用驱动功率足够的驱动即可解决。欢饮补充

四、什么是推挽变压器?

变压器开气隙的目的是为防止变压器铁芯的直流磁场与交变磁场在相同方向上产生叠加而使铁芯磁饱和,磁饱和后的铁芯中磁场就不再随电流的变化而变化了,这就会产生严重的波形失真;而推挽变压器是一个有中心抽头的变压器,电源由中心抽头进入,电流以相反的方向供应两个推挽器件且大小相等,直流电流在铁芯中的合成磁场近似为零,所以不必开气隙。推挽变压器开气隙会使变压器的效率下降。

五、单电源推挽电路原理?

推挽电路(push-pull)就是两不同极性晶体管连接的输出电路。推挽电路采用两个参数相同的功率BJT管或MOSFET管,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。推挽输出既可以向负载灌电流,也可以从负载抽取电流。如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路。

  推挽电路的作用

在一般推挽电路中,比如输出级,电路的工作是,把输入信号放大。而完成电路工作,但一般推挽电路用同级性元件(晶体管或电子管)为了实现输出级元件轮流导通,必须激励大小相等,相位相反的两个信号,即所谓的倒相问题,完成倒相可用电路,可用电感原件(变压器)但这无不增加了电路的复杂性,可靠性。互补电路可克服用单极性原件出现的上述问题。电路工作时双极性原件轮流导通,亦可省去倒相或简化电路,这样电路的稳定性可相应提高。比如当输入信号为正时,双极性中的NPN管导通PNP由于极性自动截止,当电路输入信号为负时,PNP管导通NPN管截止。不管信号如何变化都能自动完成导通于截止而完成电路工作。

  推挽电路的优缺点

  优点是:结构简单,开关变压器磁芯利用率高,推挽电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小。

  缺点是:变压器带有中心抽头,而且开关管的承受电压较高;由于变压器原边漏感的存在,功率开关管关断的瞬间,漏源极会产生较大的电压尖峰,另外输入电流的纹波较大,因而输入滤波器的体积较大。

  推挽电路工作原理

  在讲推挽电路工作原理之前,首先介绍功放的一些基本知识。从能量控制的观点看,功放电路和电压放大电路没有本质区别,但后者的要求是使负载得到不失真的电压信号,而前者的要求是获得一定的不失真的输出功率。在放大电路中,输入信号在整个周期内都有电流流过,称为甲类放大;如果只有大半个周期有电流流过,称为甲乙类放大;如果只有半个周期电流流过,称为乙类放大。

 推挽电路工作原理详解(四类互补推挽式功率放大电路分析)

  如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem-pole)输出电路。

  当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使 RC 常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。 推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。要实现线与需要用 OC(open collector)门电路。

六、单端与推挽区别?

一、以工作类别来说。单端是在A类下工作,而推挽则可在A类AB类或B类下工作。

二、以波形式放大方式而言。单端一支管子就要负责全波的放大,而推挽一支管子只负责正半波或负半波的放大。

三、以线路设计而言。单端由于是全波放大,所以不须要分相器,线路设计上比较简单。而推挽由于是半波放大,讯号进来后先要经过一个分相器将讯号分成二个,一个与原来输入的讯号相同,另一个与原来的讯号反相,线路设计上比较复杂。

四、以效率而言。单端实际效率大约在30%左右或更低,而推挽则可到50%以上或更高。 五、以谐波失真而言。单端的偶次谐波失真比较突出,尤其是二次谐波,这种谐波失真让人觉得好听。推挽由于在正半波与负半波交融下,会抵消偶次谐波失真,使得奇次谐波失真突出。奇次谐波失真会让人觉得比较鲜明有力,但没有偶次谐波失真的柔软。

六、以输出变压器而言。单端因为会有直流通过变压器,所以需要用更好的矽钢片与更大的铁心以避免磁饱和。同时为了有效降低直流内阻,它的绕线要更粗。因此,单端的输出变压器比较难绕。体积也比较大。推挽的输出变压器不像单端那么挑剔,但是对品质的要求仍然很高。

七、推挽式变压器设计公式?

关于推挽式变压器初级匝数的计算 变压器初、次线匝数,与其输入输出电压及输出功率有关,功率大小又与硅钢片截面积有关。 常用小型变压器每伏匝数计算公式为:N=10000/4.44FBS

八、推挽汽车芯片

推挽汽车芯片是当下汽车行业中备受关注的关键技术之一。随着汽车电子化的快速发展和智能化的不断提升,汽车芯片已经成为现代汽车的核心部件之一。

汽车芯片的作用

汽车芯片扮演着控制和管理汽车各种系统的重要角色。它们不仅在引擎控制单元(ECU)中发挥着关键作用,还用于车载通信、安全系统、驾驶辅助功能等方面。

推挽汽车芯片是一种特殊类型的驱动器芯片,能够提供高电流和高电压的输出。在汽车电子控制系统中,推挽芯片通常用于实现高精度的电流和电压控制,以确保各种设备的正常工作。

推挽汽车芯片的特点

推挽汽车芯片具有以下几个重要特点:

  • 高可靠性:推挽芯片在恶劣的汽车工作环境下具有出色的电热性能和耐压能力,能够在高温、高湿度以及复杂的振动条件下正常运行。
  • 高效性:推挽芯片采用了先进的功率半导体技术,能够在高频率下快速切换,并具有低能量损耗和高效能。
  • 稳定性:推挽芯片能够提供稳定的电流输出,并具有过载和过热保护功能。
  • 灵活性:推挽芯片支持多种不同的电源电压和负载电流,适用于各种不同的应用场景。

推挽汽车芯片的应用

推挽汽车芯片在汽车行业中具有广泛的应用:

  • 发动机控制:推挽芯片用于控制发动机的点火和燃油喷射系统,确保发动机的正常工作。
  • 车载通信:推挽芯片用于实现车辆之间的通信以及与道路基础设施的联网,支持智能交通系统的发展。
  • 安全系统:推挽芯片在汽车安全系统中发挥着关键作用,如制动系统、稳定性控制系统等。
  • 驾驶辅助功能:推挽芯片用于实现各种驾驶辅助功能,如自动驾驶、智能巡航控制等。

推挽汽车芯片市场前景

随着汽车智能化和电动化趋势的不断加强,推挽汽车芯片的市场需求也在不断增长。根据市场研究报告,全球汽车芯片市场预计将以高速增长,其中推挽芯片作为关键类别之一将占据重要份额。

推挽芯片的需求增长主要受到以下几个因素的推动:

  1. 汽车电子化的加速发展:随着车载电子设备的不断增多和功能的不断提升,对高性能、高可靠性芯片的需求也越来越高。
  2. 智能驾驶和自动驾驶技术的兴起:推挽芯片在实现智能驾驶和自动驾驶功能中起着至关重要的作用,随着相关技术的不断成熟,需求将进一步增长。
  3. 环保和能源节约的要求:推挽芯片在电动汽车的电池管理系统中发挥着重要作用,随着电动汽车市场的快速发展,需求也将大幅增加。

综上所述,推挽汽车芯片作为汽车电子化的重要组成部分,具有广阔的市场前景。随着技术的不断进步和需求的不断增长,推挽芯片有望在未来取得更好的发展。

九、单端输出变压器与推挽输出变压器的区别?

一、指代不同

1、推挽输出:是一种使用一对选择性地从相连负载灌电流或者拉电流的器件的电路。

2、单端输出:又称单端放大,是音响放大器中最早出现的工作模式。

二、方式不同

1、推挽输出:使用一对参数相同的功率三极管或MOSFET管,以推挽方式存在于电路中。

2、单端输出:于线路架构简单,放大波型完整,以一个正弦波输入可以获得一整个正弦波输出,以音响系统来说极为理想。

三、特点不同

1、推挽输出:电路工作时,两只对称的开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。

2、单端输出:输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。单端放大机器只能采取甲类工作状态。

十、推挽高频变压器绕制方法?

推挽高频变压器绕制的方法:

一、顺序绕线法

一般的单输出电源,高频变压器分为三个绕组,初级绕组Np,次级绕组Ns,辅助电源绕组Nb,绕制的顺序是:Np--Ns--Nb。

此种绕法工艺简单,易于控制磁芯的各种参数,一致性较好,绕线成本低,适用于大批量的生产,但漏感稍大,而耦合电容小,EMI比较好故适用于对漏感不敏感的小功率场合,一般功率小于30~40W的电源中普遍实用这种绕法。

二、三明治绕线法

初级夹次级的绕法(也叫初级平均绕法) ,此种绕法有量大优点 ,这样有利于初次级的耦合,减少漏感;还有利于绕线的平整度;最后一个好处是,供电绕组电压变化受次级的负载影响较小,更稳定。

缺点是由于初次级有两个接触面,绕组耦合电容比较大,所以EMI又比较难过。

次级夹初级的绕法(也叫次级平均绕法),当高频变压器输出是低压大电流时,一般采用此种绕法,优点是可以有效降低铜损引起的温升和减少初级耦合至变压器磁芯高频干扰。 

热门文章