主页 > 传感器温度与红外波长的规律?

温度与红外波长的规律?

一、温度与红外波长的规律?

可见光的波长范围在770 390纳米之间。

红外光又叫红外线,是波长比可见光要长的电磁波(光),波长为1毫米到770纳米之间。

近红外线是以波长700nm~900nm的近红外线为主要感应范围。

二、红外温度传感器怎么使用?

使用方法参照:

  1.握住仪表手柄并使红外线传感器指向被测物体表面。

  2.扣动扳机以开机测量。如果电量充足显示器的会亮,若不亮或电池能量不足提示则请更换电池.

  3.测量时,“SCAN”提示符将出现在液晶显示屏的左上方。

  4.继续扣动扳机:

  a.按下激光按钮打开激光瞄准器。当激光打开时,激光提示符将出现在液晶显示器上的温度上方。将红色激光束瞄准被测物体。(如果不用激光瞄准时,再次按下激光按钮可关掉激光)。

  b.用℃和℉按钮选择温度单位(℃或℉)

  c.按下背光源按键打开液晶显示屏的背光源功能。

  5.放开扳机,HOLD提示符出现在液晶显示屏上,表明读数已被保持。

  6.放开扳机大约7秒后仪表将自动关机。

三、红外温度传感器英文简写?

红外温度传感器

Infrared temperature sensor

四、远红外温度传感器工作原理?

利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。

五、红外温度传感器怎么测高温?

你直接使用测温范围到800的手持测温仪就可以了, 这个是市面很常见,有不是什么高科技。

六、红外温度计毕业设计题目

欢迎来到本篇博客!今天我们将探讨一个与红外温度计相关的毕业设计题目。

背景

红外温度计是一种通过红外辐射来测量物体温度的设备,被广泛应用于工业、医疗、农业等领域。红外温度计的工作原理是基于物体发射的红外辐射与其表面温度之间的关系。

毕业设计题目:发展基于红外技术的智能温度检测系统

随着科技的不断进步,红外技术在温度测量领域的应用也越来越广泛。本毕业设计题目旨在开发一种基于红外技术的智能温度检测系统,以满足不同行业对高精度、远距离、非接触式温度测量的需求。

设计要求

1. 快速响应:系统能够在短时间内对目标物体进行温度测量,实时显示温度数值。

2. 高精度:系统需要具备较高的温度测量精度,以便准确评估目标物体的温度。

3. 非接触式测量:系统应采用红外技术,实现对目标物体的远距离非接触式温度测量。

4. 数据记录与分析:系统需具备数据记录和分析功能,以便用户可以对历史温度数据进行回溯和分析。

设计步骤

1. 硬件选型:选择适合该系统的红外温度传感器、微控制器、显示屏等硬件模块。

2. 电路设计:根据选定的硬件模块,设计相应的电路板,确保信号传输稳定可靠。

3. 程序编写:使用适合的编程语言编写系统的控制程序,实现温度测量和显示、数据记录和分析等功能。

4. 系统集成:将硬件模块与控制程序进行集成,并进行功能测试,确保系统能够正常工作。

应用前景

基于红外技术的智能温度检测系统具有广泛的应用前景。

1. 工业领域:该系统可以被应用于工厂、车间等环境中的温度监测和控制,帮助提高生产效率和安全性。

2. 医疗领域:系统可以用于医院、医疗机构的体温检测,实现快速、准确的体温筛查。

3. 农业领域:应用于农业温室中,帮助农民实时监测温室内部的温度情况,优化植物生长环境。

总结

本篇博客介绍了一个有关红外温度计的毕业设计题目,即开发基于红外技术的智能温度检测系统。该系统具备快速响应、高精度、非接触式测量和数据记录与分析的特点,并具有广泛的应用前景。希望通过这个设计题目的探索,能够激发学生对红外技术应用的兴趣,并培养他们的设计能力和创新意识。

七、红外线温度传感器怎样接线?

红外线温度传感器接线方法如下:

1. 确定红外线温度传感器的引脚:一般来说,红外线温度传感器有三个引脚,分别是VCC、GND和OUT。其中VCC和GND分别为电源正负极,OUT为输出信号引脚。

2. 接电源:将红外线温度传感器的VCC引脚连接到电源的正极上,GND引脚连接到电源的负极上。

3. 连接微控制器或单片机:将红外线温度传感器的OUT引脚连接到微控制器或单片机的一个可用的IO口上。

4. 添加电容:为了减小干扰,建议在VCC和GND之间添加一个电容,电容值一般为0.1uF左右。

注意事项:

1. 接线时请确保极性正确,防止出现损坏的情况。

2. 为了保证测量精度,建议将红外线温度传感器放置在被测物体附近10cm处进行测量。

3. 红外线温度传感器不能直接暴露在阳光下,否则可能会对测量精度产生影响。

八、近红外光与温度的关系?

强度大,温度高

红外线是一种电磁波,位于可见光红光外端,在绝对零度(-273.15℃) 以上的物体都辐射红外能量,是红外测温技术的基础。

红外辐射的辐射度、辐射出射度、辐射强度、辐射功率等均是物理中有关红外辐射的相关计算量。

一般物体的热辐射

一般物体对辐射的吸收比总是小于1,因而发射热辐射的能力也小于黑体。对于它的辐射度,一般不直接测量,而是与同温度的黑体辐射进行比较,用一个比值表示其辐射特性。

九、红外辐射强度与温度的公式?

强度大,温度高

红外线是一种电磁波,位于可见光红光外端,在绝对零度(-273.15℃) 以上的物体都辐射红外能量,是红外测温技术的基础。

红外辐射的辐射度、辐射出射度、辐射强度、辐射功率等均是物理中有关红外辐射的相关计算量。

一般物体的热辐射

一般物体对辐射的吸收比总是小于1,因而发射热辐射的能力也小于黑体。对于它的辐射度,一般不直接测量,而是与同温度的黑体辐射进行比较,用一个比值表示其辐射特性。

首先,比较热辐射物体与同温度黑体在各个方向上的辐射度。前者的辐射度L可写成 L=ε,ψ)Lbb(16)

式中ε称为发射率,ε<1。对于大部分具有实用价值的热辐射物体,ε与方向,ψ)无关。因而达类物体也具有朗伯型表面,M=πL关系同样适用。

其次,比较热辐射物体与黑体在各个温度及各波长的法向辐射度。利用上述关系就可得到物体的辐射出射度M

M=ε(T,λ)Mbb(T,λ)(17)

式中ε与波长和热辐射体的温度有关。但是,对于一些具有实用价值的热辐射物体,ε随λ的变化比较缓慢。在所需要的光谱范围内,可以把ε看作常数,或者取适当的平均值。这样,按普朗克公式对波长积分所得的斯忒藩定律可写成

M=ε(T)σT4(18)

因而,对任一热辐射物体,都可以用一个比ε来描述它的热辐射性能。一般说来,ε是方向、温度和波长的复杂函数。但是,一些常用的热辐射体,大都具有朗伯型表面,ε随λ的变化缓慢,用一个对波长作适当平均的ε(T)就足以描述它的全部热辐射特性。

在前面讨论空腔热平衡时,曾得到式(12),将其与式(18)相比,即得

ε=α (19)

即任何物体的吸收比与发射率在任何温度和任何波长时都相等。黑体是其中的一个特例,ε=α=1。

当α<1时,投射到物体表面的辐射,一部分被反射,其余部分进入体内被吸收。但是,也有可能仅有一部分被吸收,而其余部分透过物体辐射出去。如果反射比(反射出去的辐射功率与入射辐射功率之比)为 ρ,透射比(透过物体的辐射功率与入射辐射功率之比)为τ,则按能量守恒定律,应有

α+ρ+τ=1(20)

对于不透明物体τ=0,则得

α+ρ=1

因而有

ε=1-ρ(21)

在实践中,常用测量ρ的办法来求ε。

十、红外热释电传感器与红外传感器有什么不同?

红外热释电传感器是一种采用高热电系数材料为核心制成的用于探测红外辐射的传感器,其本身是不带红外辐射源的被动式红外传感器。

而通常所说的红外传感器是指由红外发射管和红外接收管组成的对射或反射式传感器。这两种传感器的主要区别是工作原理不同前者是被动地探测红外辐射,后者是主动发射红外线再由接收器根据光线被遮挡或反射接收的光强度变化来完成探测工作。

热门文章