主页 > 二极管二极管的特性是什么?

二极管的特性是什么?

一、二极管的特性是什么?

二极管是一种半导体器件,具有以下特性:

  • 只允许单向电流通过,即只能从正极流向负极,反向电流非常小。
  • 在正向电压下,电流随电压呈指数增长;在反向电压下,电流非常小,近似为零。
  • 具有导通压降,即正向电压达到一定值后,电流急剧增加,但增长速度逐渐减缓,直到饱和。
  • 具有低噪声、快速开关、稳定性好等特点。
  • 用途广泛,包括整流、稳压、开关等方面。

二、儿二极管的特性?

二极管特性:

1 单向导电

2 整流 , 检波

3 稳压,嵌位

4 变容,调频

5 发光,指示,照明,激光

三、二极管的导电特性?

二极管具有单方向导电性,二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。

四、二极管的伏安特性?

二极管既然是一个PN结,当然具有单向导电性。

Uon称为死区电压,通常硅管的死区电压约为0.5V,锗管约为0.1V。

当外加正向电压低于死区电压时,外电场还不足以克服内电场对扩散运动的阻挡,正向电流几乎为零。

当外加正向电压超过死区电压后,内电场被大大削弱,正向电流增长很快,二极管处于正向导通状态。

导通时二极管的正向压降变化不大,硅管约为0.6~0.8V,锗管约为0.2~0.3V。

温度上升,死区电压和正向压降均相应降低。

UBR称为反向击穿电压,当外加反向电压低于UBR时,二极管处于反向截止区,反向电流几乎为零,但温度上升,反向电流会有增长。

当外加反向电压超过UBR后,反向电流突然增大,二极管失去单向导电性,这种现象称为击穿。

普通二极管被击穿后,由于反向电流很大,一般会造成“热击穿”,不能恢复原来性能,也就是失效了。

二极管的应用范围很广,主要都是利用它的单向导电性,可用于整流、检波、限幅、元件保护以及在数字电路中用作开关元件等。

五、二极管的热敏特性?

而热敏二极管就相当于一个温控开关,当其周围的温度正常时,电路是联通的,当受外界因素影响导致其周围的温度升高并达到其工作温度后就会截止,整个电路就等于断开了,起到保护作用

热敏二极管可做温度传感器.常用于电子体温计,电子温度计和自动温度控制电路中.

自动控制由传感器,电子线路和执行机构三部分驵成.

六、二极管外部特性?

1、正向性

外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。当二极管两端的正向电压超过一定数值,内电场很快被削弱,特性电流迅速增长,二极管正向导通。

2、反向性

外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。一般硅管的反向电流比锗管小得多,小功率硅管的反向饱和电流在nA数量级,小功率锗管在μA数量级。温度升高时,半导体受热激发,少数载流子数目增加,反向饱和电流也随之增加。

七、二极管e特性?

发光二极管的压降是比较固定的,通常红色为1.6V左右,绿色有2V和3V两种,黄色和橙色约为2.2V,蓝色为3.2V左右。对于常用的几毫米大小的二极管,其工作电流一般在2毫安至20毫安之间,电流越大亮度越高,用电源电压减去二极管的压降,再除以设定的工作电流,就得出限流电阻的阻值。

限流电阻R可用下式计算:R=(E-UF)/IF式中E为电源电压,UF为LED的正向压降,IF为LED的正常工作电流。发光二极管的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。

PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。扩展资料它是半导体二极管的一种,可以把电能转化成光能。

发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。

当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。发光二极管的反向击穿电压大于5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过二极管的电流。 

八、二极管传输特性?

一般二极管除自身压降0.7(褚0.3v)外很少消耗电能

九、二极管特性方程?

一,二极管的伏安特性

伏安特性:二极管的电流与其端电压的关系称为伏安特性。

开启电压Uon:二极管开始导通的临界电压。

击穿电压:U(BR)

反向饱和电流:Is

二,二极管的电流方程

q:电子的电量

k:玻尔兹曼常数

T:热力学温度

常温:热力学温度300度

三,二极管的单向导电性

四,温度对伏安特性的影响

十、二极管耐压特性?

小功率的发光二极管正常工作电流在10 ~ 30mA范围内。通常正向压降值在1.5 ~ 3V范围内。发光二极管的反向耐压一般在6V左右。

红色发光二极管的工作电压最低,约1.6-1.7V;其次是普绿色、黄色,1.7-1.8V;白色1.8-1.9V;橙色1.8V-2.4V;蓝、白、翠绿电压范围:2.8V-3.5V。

将二极管反向接到兆欧表两端,并用万能表的500V档监测二极管的电压,逐渐增加兆欧表的电压,二极管被击穿时,电压不会继续升高的,这时万能表指示的电压就是二极管的反向耐压。一般只有几十伏。测量时,因为兆欧表的电流很小的缘故,不用担心二极管损坏,标准测试电流为20MA。

热门文章