主页 > 二极管发光二极管并联电阻的作用?

发光二极管并联电阻的作用?

一、发光二极管并联电阻的作用?

在这种情况下是作为泄放电阻使用的,在LED前级并联电阻到GND可以有效解决因为电容效应引起的LED尾灯在关闭状态微亮的现象。由于LED可以在很小的电流下发光,而汽车内部走线多数缠绕在一起,若是没有泄放电阻的存在,尾灯会因导线之间的互感或者电容效应而微亮。

二、发光二极管的作用是什么?

发光二极管简称为LED。由含镓(Ga)、砷(As)、磷(P)、氮(N)等的化合物制成。当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。在电路及仪器中作为指示灯,或者组成文字或数字显示。

砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光,氮化镓二极管发蓝光。发光二极管它是半导体二极管的一种,可以把电能转化成光能。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。

当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。发光二极管的反向击穿电压约5伏。

它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过管子的电流。

三、显示器发光二极管的作用?

发光二极管的作用非常广泛,未来的绿色光源,最常见的在电器中作为电源指示灯,还有现在随处可见的LED显示屏,慢慢还会走进家用照明领域。根据发光颜色不同发光二极管有不同的点亮电压和最高限制电压,在允许的工作电压内它会随着电压的升高而变亮

四、发光二极管的主要作用是什么?

二极管有两个管脚,一个是正极一个是负极,它最大的特性是单向导电性,既电荷只能由正极流向负极。二极管主要的参数有额定电流、额定电压、结电压等,选用时应根据实际要求加以甄别选用。二极管种类很多功能各异,常见的有整流二极管,稳压二极管,发光二极管等。

整流,开关,检波等二极管是利用单向导电性工作的,主要是把交流变成直流。稳压二极管是利用齐纳二极管反向击穿时,结电压在一定电流下保持基本不变的原理来工作的。而发光二极管是个负载,正向加电会发光。

巧学系列——模拟电路

五、发光二极管的主要作用

发光二极管的主要作用

发光二极管(LED)是一种高效、环保、节能的半导体光源,具有很多独特的特点和优势。LED的主要作用是作为照明设备,其使用范围广泛,例如电视、汽车灯、路灯、广告牌、背光源、舞台灯光、室内和室外照明等领域。

此外,发光二极管还可以用于信号传输。由于LED具有快速开关速度和高频响应特性,它可以用于光通信、遥控器、传感器等应用领域。

在农业生产中,发光二极管也有着广泛的应用。例如,在植物栽培中,LED可以提供植物生长所需的光照,促进植物的生长和发育。此外,LED还可以用于温室种植、水产养殖等领域。

总的来说,发光二极管作为一种高效、环保、节能的光源,其应用领域非常广泛。未来随着技术的不断发展,LED的应用前景将更加广阔。

六、红外发光二极管的作用

红外发光二极管的作用

红外发光二极管是一种非常重要的光电元件,其在许多领域中都有广泛的应用。它的主要作用是能够将输入的电信号转换成红外光信号,从而实现光电转换。这对于许多需要利用红外光进行工作的设备来说是非常重要的。下面我们将详细介绍红外发光二极管的作用及其在各个领域中的应用。

红外遥控

红外发光二极管在红外遥控领域中的应用是最为广泛的。许多电子产品,如电视、空调、音响等,都采用了红外遥控技术来实现设备的控制。红外发光二极管作为其中的关键元件,能够将微弱的电信号转换成红外光信号,从而实现远距离的红外遥控。同时,由于其体积小、功耗低、稳定性高等特点,使得它在红外遥控领域中的应用越来越广泛。

安全监控

红外发光二极管在安全监控领域中也发挥着重要的作用。许多安全监控设备,如摄像头、红外探测器等,都采用了红外发光二极管来实现夜视功能。由于红外发光二极管能够发出特定波长的红外光,使得摄像机能够在黑暗环境下拍摄到清晰的画面,从而提高了安全监控的可靠性。

医疗领域

红外发光二极管在医疗领域中也具有广泛的应用。例如,一些医疗器械,如红外理疗仪、红外治疗仪等,都采用了红外发光二极管来发出特定波长的红外光,从而实现对人体组织的照射治疗。此外,红外发光二极管还可以用于医疗设备的远程控制和数据传输。

其他应用

除了上述应用外,红外发光二极管还在许多其他领域中有着广泛的应用。例如,在工业自动化、智能家居、智能交通等领域中,红外发光二极管也发挥着重要的作用。随着科技的不断发展,相信红外发光二极管的应用将会越来越广泛。

七、发光二极管作用及电路

发光二极管作用及电路

发光二极管(LED)是一种半导体器件,它可以将电流转化为光能,从而发光。LED具有低功耗、高亮度、长寿命等优点,在各种电子产品中得到广泛应用。

LED的工作原理非常简单,它是一种具有单向导电性的半导体器件,只有在正向电压下才能导通。当正向电压超过二极管的峰值电压时,电流通过二极管,半导体材料受到激发,从而发射光子,产生光电效应,形成光。LED的颜色主要由半导体材料的种类和掺杂方式决定。

在LED电路中,为了保证LED正常工作,通常需要加入限流电阻。限流电阻的作用是限制LED的电流,避免LED受到过大的电流损坏。另外,为了控制LED的亮度,通常还需要加入PWM调光电路。PWM调光电路可以通过改变LED的工作时间比例来控制LED的亮度。

LED电路的设计需要考虑多种因素,例如LED的工作电压、工作电流、发光强度、光谱特性等。为了使LED电路正常工作,还需要考虑电源的电压和电流、限流电阻的阻值、PWM调光电路的设计等因素。

总之,LED作为一种新兴的光源,具有广泛的应用前景。在今后的电子产品设计中,LED将继续发挥重要的作用。

八、发光二极管的原理和作用

发光二极管(Light Emitting Diode,LED)是一种半导体器件,具有将电能转化为光能的功能。它以其高效、低功耗和长寿命等特点,成为现代电子技术中不可或缺的重要组成部分。

原理

发光二极管的工作原理是基于半导体材料的电学特性和发光特性。

发光二极管由两种不同类型的半导体材料组成,分别是P型半导体和N型半导体。它们之间形成一个PN结,其中P型半导体富含正电荷,N型半导体富含负电荷。当外加电压施加在PN结上时,电子从N型半导体向P型半导体迁移,空穴从P型半导体向N型半导体迁移。在PN结附近,电子与空穴相遇并重新组合,释放出能量以光的形式发射出来。

发光二极管的发光颜色取决于所使用的半导体材料。不同的材料能够发射不同波长的光,从红色到紫色等各种颜色都可以实现。

作用

发光二极管在现代电子技术中有着广泛的应用。

1: 照明:发光二极管具有高效能的发光特性,可用于室内照明和室外照明。相比传统的白炽灯和荧光灯,LED照明具有更低的能耗和更长的寿命。

2: 显示:由于发光二极管可以发射不同颜色的光,因此它被广泛应用于各种显示器件中,如数字显示器、液晶显示屏、电视屏幕等。

3: 信号传输:发光二极管可以作为光电转换器件,将电信号转换为光信号进行传输。它在光纤通信和光电传感器中发挥着重要作用。

4: 指示灯:发光二极管的小尺寸、低功耗和丰富的颜色选择,使其成为各种电子设备中的指示灯,如电视遥控器、手机等。

总结起来,发光二极管通过其原理和作用,在照明、显示、信号传输和指示灯等领域发挥着重要的作用。随着技术的不断进步和创新,发光二极管必将在未来的电子领域中发展出更广泛的应用。

九、发光二极管的作用与接法图解

发光二极管,也称LED,是一种电子元器件,其主要作用是将电力转换为可见光。由于其高效、耐用和低功耗的特性,LED已经成为现代电子设备中最受欢迎的元件之一。

发光二极管的基本结构

LED是由两个不同材料制成的半导体器件。其中一个材料是P型半导体,另一个是N型半导体。P型半导体中的材料含有“空穴”,而N型半导体中的材料含有“自由电子”。当这两种材料结合在一起时,空穴和自由电子会相互结合,从而产生能量。这些能量会随后以光的形式释放出来,从而产生所谓的“发光”。

发光二极管的优点

相对于传统的灯泡和荧光灯,LED具有许多优点。首先,它们的寿命很长,一般可以持续使用数万小时。其次,它们的能效很高,只消耗极少的能量就能够产生足够的光亮。此外,LED还非常耐用,不易受到物理和化学损害,因此可以使用在各种恶劣环境中。

发光二极管的应用

由于其高效能和低耗电的特性,LED已经成为现代电子设备中最受欢迎的元件之一。它们广泛应用于各种照明设备、显示屏幕、电子标志和汽车灯光等领域。此外,LED还被广泛应用于工业、医疗和农业等领域,以提高效率和降低成本。

发光二极管的接法图解

接法是使用LED时非常重要的一步。以下是一些常见的LED接法图解:

单个LED接法图解

在单个LED接法中,需要将LED的阳极连接到电源的正极,将LED的阴极连接到电源的负极。这种接法非常简单,适用于需要单独控制的LED。

多个LED串联接法图解

在多个LED串联接法中,需要将LED的阳极连接到电源的正极,将LED的阴极连接到下一个LED的阳极上,以此类推,直到连接最后一个LED的阴极到电源的负极。这种接法可以让多个LED同时发光。

多个LED并联接法图解

在多个LED并联接法中,需要将所有LED的阳极连接到电源的正极,将所有LED的阴极连接到电源的负极。这种接法可以让多个LED同时发光,而且每个LED可以独立控制。

总结

LED是一种高效、耐用和低功耗的电子元器件,已经成为现代电子设备中最受欢迎的元件之一。它们广泛应用于各种照明设备、显示屏幕、电子标志和汽车灯光等领域。在使用LED时,合适的接法非常重要,常见的接法包括单个LED接法、多个LED串联接法和多个LED并联接法。希望本文能够帮助您更好地了解发光二极管的作用和接法。

十、发光二极管几伏电压才能发光?

这里不同颜色的发光二极管,工作电压都不一样,这里给你总结了比较常见的发光二极管。

发光二极管的工作原理是什么?为什么可以发出不同颜色的光

这里在给你详细介绍一下发光二极管,相信你会对发光二极管有个更为深刻的立交。

一、什么是发光二极管?

发光二极管(LED)本质上是一种特殊类型的二极管,因为发光二极管具有与PN结二极管非常相似的电气特性。当电流流过发光二极管(LED)时,发光二极管(LED)允许电流正向流动,并且阻止电流反向流动。

发光二极管由非常薄的一层但相当重掺杂的半导体材料制成。根据所使用的半导体1材料和掺杂量,当正向偏置时,发光二极管(LED)将发出特定光谱波长的彩色光。如下图所示,发光二极管(LED)用透明罩封装,以可以发出光来。

发光二极管实物图

二、发光二极管电路符号

发光二极管符号与二极管符号相似,只是有两个小箭头表示光的发射,因此称为发光二极管(LED)。发光二极管包括两个端子,即阳极(+)和阴极(-),发光二极管的符号如下所示。

发光二极管符号

三、发光二极管正负极怎么区分?

这个在我之前的文章里面有详细的讲解,可以直接点击下面这个文章。

二极管怎么区分正负极

这里简单地讲一下。

  • 发光二极管比较常用,正负极容易区分。长引脚为正极,短引脚为负极。
  • 引脚相同的情况下,LED管体内极小的金属为正极,大块的为负极。
  • 贴片式发光二极管,一般都有一个小凸点区分正负极,有特殊标记为负极,无特殊标记为正极。
发光二极管正负极性判断图
发光二极管正负极性判断图

三、发光二极管怎么测好坏?

更为具体的,大家可以去看我的这篇文章,直接点击进入就可以了。

二极管怎么测好坏?

四、发光二极管的工作原理

发光二极管在正向偏置时发光,当在结上施加电压以使其正向偏置时,电流就像在任何 PN 结的情况下一样流动。来自 p 型区域的空穴和来自 n 型区域的电子进入结并像普通二极管一样重新组合以使电流流动。当这种情况发生时,能量被释放,其中一些以光子的形式出现。

发现大部分光是从靠近 P 型区域的结区域产生的。因此,二极管的设计使得该区域尽可能靠近器件的表面,以确保结构中吸收的光量最少。具体的原理可以看下图。

发光二极管工作原理图

上图显示了发光二极管的工作原理以及该图的分布过程。

  • 从上图中,我们可以观察到 N 型硅是红色的,包括由黑色圆圈表示的电子。
  • P 型硅是蓝色的,它包含空穴,它们由白色圆圈表示。
  • pn结上的电源使二极管正向偏置并将电子从n型推向p型。向相反方向推动空穴。
  • 结处的电子和空穴结合在一起。
  • 随着电子和空穴的重新结合,光子被释放出来。
发光二级管原理图

五、发光二极管怎么发出不同颜色的光?

发光二极管由特殊半导体化合物制成,例如砷化镓 (GaAs)、磷化镓 (GaP)、砷化镓磷化物 (GaAsP)、碳化硅 (SiC) 或氮化镓铟 (GaInN) 都以不同的比例混合在一起,以产生不同波长的颜色。

不同的 LED 化合物在可见光谱的特定区域发光,因此产生不同的强度水平。所用半导体材料的准确选择将决定光子发射的总波长,从而决定发射光的颜色。

发光二极管的实际颜色取决于所发射光的波长,而该波长又取决于制造过程中用于形成 PN 结的实际半导体化合物。

因此,LED 发出的光的颜色不是由 LED 塑料体的颜色决定的,尽管这些塑料体略微着色以增强光输出并在其未被电源照亮时指示其颜色。

六、发光二极管材料

为了产生可以看见的光,必须优化PN结并且必须选择正确的材料。常用的半导体材料包括硅和锗,都是一些简单的元素,但这些材料制成的PN结不会发光。相反,包括砷化镓、磷化镓和磷化铟在内的化合物半导体是化合物半导体,由这些材料制成的结确实会发光。

纯砷化镓在光谱的红外部分释放能量,为了将光发射带入光谱的可见红色端,将铝添加到半导体中以产生砷化铝镓 (AlGaAs),也可以添加磷以发出红光。对于其他颜色,则使用其他材料。例如,磷化镓发出绿光,而铝铟镓磷化物则用于发出黄光和橙光,大多数发光二极管基于镓半导体。

不同发光二极管的材料

  • 砷化镓 (GaAs) – 红外线
  • 砷化镓磷化物 (GaAsP) – 红色至红外线,橙色
  • 砷化铝镓磷化物 (AlGaAsP) – 高亮度红色、橙红色、橙色和黄色
  • 磷化镓 (GaP) – 红色、黄色和绿色
  • 磷化铝镓 (AlGaP) – 绿色
  • 氮化镓 (GaN) – 绿色、翠绿色
  • 氮化镓铟 (GaInN) – 近紫外线、蓝绿色和蓝色
  • 碳化硅 (SiC) – 蓝色作为基材
  • 硒化锌 (ZnSe) – 蓝色
  • 氮化铝镓 (AlGaN) – 紫外线

更加具体的大家可以看下面这个图,下图涵盖了发光二极管的材料,发光二极管颜色,发光二极管工作电压、发光二极管波长。

发光二极管颜色材料对应图

七、发光二极管VI特性

目前有不同类型的发光二极管可供选择,并且拥有不同的LED 特性,包括颜色光或波长辐射、光强度。LED的重要特性是颜色。在开始使用 LED 时,只有红色。随着半导体工艺的帮助,LED的使用量增加,对LED新金属的研究,形成了不同的颜色。

发光二极管VI特性图

八、发光二极管的应用

LED 有很多应用,下面将解释其中的一些。

  • LED在家庭和工业中用作灯泡
  • 发光二极管用于摩托车和汽车
  • 这些在手机中用于显示消息
  • 在红绿灯信号灯处使用 LED

1、发光二极管串联电阻电路

串联电阻值R S可以通过简单地使用欧姆定律计算得出,通过知道 LED 所需的正向电流I F、组合两端的电源电压V S和 LED 的预期正向电压降V F在所需的电流水平,限流电阻计算如下:

LED串联电阻电路

2、发光二极管示例

正向压降为 2 伏的琥珀色 LED 将连接到 5.0v 稳定直流电源。使用上述电路计算将正向电流限制在 10mA 以下所需的串联电阻值。如果使用 100Ω 串联电阻而不是先计算,还要计算流过二极管的电流。

1)串联电阻需要在 10mA 。

发光二极管串联电阻公式

2)用100Ω串联电阻。

发光二极管串联电流公式

上面的第一个计算表明,要将流过 LED 的电流精确地限制在 10mA,我们需要一个300Ω的电阻器。在E12系列电阻中没有300Ω电阻,因此我们需要选择下一个最高值,即330Ω。快速重新计算显示新的正向电流值现在为 9.1mA。

3、发光二极管串联电路

我们可以将 LED 串联在一起,以增加所需的数量或在显示器中使用时增加亮度。与串联电阻一样,串联的 LED 都具有相同的正向电流,IF仅作为一个流过它们。由于所有串联的 LED 都通过相同的电流,因此通常最好是它们都具有相同的颜色或类型。

发光二极管串联电路图

虽然 LED 串联链中流过相同的电流,但在计算所需的限流电阻R S电阻时,需要考虑它们之间的串联压降。如果我们假设每个 LED 在点亮时都有一个 1.2 伏的电压降,那么这三个 LED 上的电压降将为 3 x 1.2v = 3.6 伏。

如果我们还假设三个 LED 由同一个 5 V逻辑器件点亮或提供大约 10 毫安的正向电流,同上。然后电阻两端的电压降RS及其电阻值将计算为:

发光二极管串联公式

同样,在E12(10% 容差)系列电阻器中没有140Ω电阻器,因此我们需要选择下一个最高值,即150Ω。

4、用于偏置的发光二极管电路

大多数 LED 的额定电压为 1 伏至 3 伏,而正向电流额定值为 200 毫安至 100 毫安。

用于偏置的发光二极管电路图

LED 偏压如果向 LED 施加电压(1V 至 3V),则由于施加的电压在工作范围内的电流流动,因此它可以正常工作。类似地,如果施加到 LED 的电压高于工作电压,则发光二极管内的耗尽区将由于高电流而击穿。这种意想不到的高电流会损坏设备。

这可以通过将电阻与电压源和 LED 串联来避免。LED 的安全额定电压范围为 1V 至 3 V,而安全额定电流范围为 200 mA 至 100 mA。

这里,设置在电压源和 LED 之间的电阻器称为限流电阻器,因为该电阻器限制电流的流动,否则 LED 可能会损坏它。所以这个电阻在保护LED方面起着关键作用。

流过 LED 的电流可以写成:

IF = Vs – VD/Rs

'IF' 是正向电流

“Vs”是电压源

“VD”是发光二极管两端的电压降

“Rs”是限流电阻

电压量下降以破坏耗尽区的势垒。LED 电压降范围为 2V 至 3V,而 Si 或 Ge 二极管为 0.3,否则为 0.7 V。

因此,与Si或Ge二极管相比,LED可以通过使用高电压来操作。

发光二极管比硅或锗二极管消耗更多的能量来工作。

5、发光二级管驱动电路

TTL 和 CMOS 逻辑门的输出级都可以提供和吸收有用的电流量,因此可用于驱动 LED。普通集成电路 (IC) 在灌入模式配置中具有高达 50mA 的输出驱动电流,但在源极模式配置中具有约 30mA 的内部限制输出电流。

通过上面应该已经很明白了,无论哪种方式,都必须使用串联电阻将 LED 电流限制在安全值。以下是使用反相 IC 驱动发光二极管的一些示例,但对于任何类型的集成电路输出,无论是组合的还是顺序的,其想法都是相同的。

6、IC发光二极管驱动电路

IC驱动LED电路图

如果多个LED需要同时驱动,例如在大型 LED 阵列中,或者集成电路的负载电流过高,或者只使用分立元件而不是IC。那么另一种驱动方式下面给出了使用双极 NPN 或 PNP 晶体管作为开关的 LED。和以前一样,需要一个串联电阻R S来限制 LED 电流。

7、晶体管驱动电路

晶体管LED驱动电路

发光二极管的亮度不能通过简单地改变流过它的电流来控制。允许更多电流流过 LED 会使其发光更亮,但也会导致其散发更多热量。LED 旨在产生一定数量的光,工作在大约 10 至 20mA 的特定正向电流下。

在节电很重要的情况下,可以使用更少的电流。但是,将电流降低到 5mA 以下可能会使其光输出变暗,甚至将 LED 完全“关闭”。控制 LED 亮度的更好方法是使用称为“脉冲宽度调制”或 PWM 的控制过程,其中 LED 根据所需的光强度以不同的频率重复“打开”和“关闭”。

7、使用PWM的发光二极管光强度

PWM的LED光强度图

当需要更高的光输出时,具有相当短占空比(“ON-OFF”比)的脉冲宽度调制电流允许二极管电流,因此在实际脉冲期间输出光强度显着增加,同时仍保持 LED “平均电流水平”和安全范围内的功耗。

这种“开-关”闪烁条件不会影响人眼所见,因为它“填充”了“开”和“关”光脉冲之间的间隙,只要脉冲频率足够高,使其看起来像连续的光输出。因此,频率为 100Hz 或更高的脉冲实际上在眼睛看来比具有相同平均强度的连续光更亮。

8、LED显示屏

除了单色或多色 LED 外,多个发光二极管还可以组合在一个封装内,以生产条形图、条形、阵列和七段显示器等显示器。

7 段 LED 显示屏在正确解码时提供了一种非常方便的方式,以数字、字母甚至字母数字字符的形式显示信息或数字数据,顾名思义,它们由七个单独的 LED(段)组成,在一个单独的展示包中。

为了分别产生所需的从0到9和A到F的数字或字符,需要在显示屏上点亮 LED 段的正确组合。标准的七段 LED 显示屏通常有八个输入连接,每个 LED 段一个,一个用作所有内部段的公共端子或连接。

  • 共阴极显示器 (CCD) – 在共阴极显示器中,LED 的所有阴极连接都连接在一起,并且通过应用高逻辑“1”信号照亮各个段。
  • 共阳极显示器 (CAD) – 在共阳极显示器中,LED 的所有阳极连接都连接在一起,并且通过将端子连接到低逻辑“0”信号来照亮各个段。

9、典型的七段 LED 显示屏

典型七段LED显示屏

10、发光二极管光耦合器

最后,发光二极管的另一个有用应用是光耦合。也称为光耦合器或光隔离器,是由发光二极管与光电二极管、光电晶体管或光电三端双向可控硅开关组成的单个电子设备,可在输入之间提供光信号路径连接和输出连接,同时保持两个电路之间的电气隔离。

光隔离器由一个不透光的塑料体组成,在输入(光电二极管)和输出(光电晶体管)电路之间具有高达 5000 伏的典型击穿电压。当需要来自低电压电路(例如电池供电电路、计算机或微控制器)的信号来操作或控制另一个在潜在危险电源电压下操作的外部电路时,这种电气隔离特别有用。

光电二极管和光电晶体管光耦合器

光隔离器中使用的两个组件,一个光发射器,如发射红外线的砷化镓 LED 和一个光接收器,如光电晶体管,光耦合紧密,并使用光在其输入之间发送信号和/或信息和输出。这允许信息在没有电气连接或公共接地电位的电路之间传输。

光隔离器是数字或开关器件,因此它们传输“开-关”控制信号或数字数据。模拟信号可以通过频率或脉宽调制来传输。

九、LED的优缺点

发光二极管的优点包括以下几点。

  • LED的成本更低,而且很小。
  • 通过使用 LED 的电力进行控制。
  • LED 的强度在微控制器的帮助下有所不同。
  • 长寿命
  • 高效节能
  • 无预热期
  • 崎岖
  • 不受低温影响
  • 定向
  • 显色性非常好
  • 环保
  • 可控

发光二极管的缺点包括以下几点。

  • 价钱
  • 温度敏感性
  • 温度依赖性
  • 光质
  • 电极性
  • 电压灵敏度
  • 效率下降
  • 对昆虫的影响

以上就是关于发光二极管的一些基础知识及工作原理,大家有什么疑问,欢迎在评论区留言。

相关内容有参考网络

图片来源于网络

热门文章