主页 > 二极管二极管阳极和阴极导通原理?

二极管阳极和阴极导通原理?

一、二极管阳极和阴极导通原理?

二极管导通状态及其截止状态的工作原理,

要了解二极管的截止状态,首先,需要清楚的认知二极管的P区和N区,外观上区分时,有一圈白色或黑色圆圈一端的是N区,另一端是P区;管脚短的是N区,长的是P区。在二极管P区接电源正极,N区接电源负极,此为正偏,因为二极管正常工作时导通的电流方向是由P区流向N区,阻挡层变薄,电荷很容易通过,那么我们可以粗略的认为正偏时候的二极管是一个导体。二极管处于导通状态。

倘若将P区接电源负极,N区接电源正极,此时的电流方向由N区流向P区,此状态称为反偏,反偏使阻挡层变厚,只能通过很小的漏电流,粗略的认为反偏时的二极管是绝缘体。二极管处于截止状态。

二极管正偏时导通,反偏时截止。另外硅管导通电压是0.7V,锗管导通电压是0.3V。当电源电压低于导通电压时,即便接成正偏,那么二极管也处于截止状态。

阳极反应电对的电位比如锌和铜组成原电池阳极反应Cu2+ +2e =Cu,阳极电位就是Cu/Cu2+,具体的值是需要查表的。阴极的电极电位。它随流过电极的电流密度而变化,电流密度增大,阴极电位向负方向移动。

当二极管的阳极电位高于阴极电位,称为给二极管加正向电压。当二极管承受正向电压很低时,二极管呈现出一个大电阻,好像有一个门槛。硅管的门槛电压(又称为死区电压)约为0.5 V,锗管的死区电压约为0.1 V。

这种电位的高低容易对二极管的截止状态产生影响。所谓截止状态就是发射结和集电极都是反偏的状态,输出电流当然很小;这是一种”关”态。在共基极组态中,该很小的输出电流也就是集电结的反向饱和电流Ibco;而在共发射极组态中,该很小的输出电流是E、C电极之间的所谓穿透电流Ieco。

当二极管正偏导通时,两端的管压降并不为0。对硅材料的二极管来说,管压降约为0.7V左右,而锗材料的约为0.3V左右。因此要比较准确的计算出电压值,还应将二极导通的管压降考虑进去。

而对于二极管反偏截止时,由于反向电阻极大,可以认为其中流过的电流为0

二、晶闸管的导通原理?

晶闸管导通原理:

1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。

2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。

3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。门极只起触发作用。

4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

三、二极管导通角变小导通时间?

在未加滤波电容之前,整流电路中的二极管导通角θ为π。加滤波电容后,只有当电容充电时,二极管才导通,因此,每只二极管的导通角均小于π。

因为电容有储能作用,电容两端电压不会突变,二极管负极电压变高了,二极管的导通时间相对来讲变小了!

四、p most导通原理?

1:PNP三极管 PNP型三极管,由2块P型半导体中间夹着1块N型半导体所组成的三极管,称为PNP型三极管。也可以描述成,电流从发射极E流入的三极管。 三极管导通时IE=(放大倍数+1)*IB和ICB没有关系,ICB=0 ICB>0时,可能三极管就有问题,所以三极管在正常工作时,不管是工作在放大区还是饱和区ICB=0 当UEB>0.7V(硅)(锗0.2V),RC/RB<放大倍数时,三极管工作在饱和区,反之就工作在放大区 2:NPN三极管 对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。 晶体三极管按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的

五、导通阻抗测试原理?

导通阻抗测试工作原理:给需要测试的线缆施加一定电流,线束测试测量线缆端点处的电压值和电流值,由线束测试仪内部对测量结果使用欧姆定律进行换算,得出准确的电阻值。

用此电阻值与用户设定的电阻值进行比较,判定是否符合用户的指标要求,并将判定结果以“通过”或“不通过”的明确信息形式显示在计算机上告知用户。

六、发光二极管导通原理

发光二极管导通原理

发光二极管是一种常见的半导体组件,其导通原理涉及到电子学和物理学的基本知识。首先,我们需要了解发光二极管的工作原理。发光二极管是由一个半导体材料制成的,通常具有单向导电性。当电流通过发光二极管时,它会将电能转化为光能,从而产生可见的光。 发光二极管的导通需要满足一定的条件。首先,发光二极管必须加正向偏压,这可以通过连接一个适当的电源来实现。其次,发光二极管必须处于合适的温度条件下,以确保其正常工作。温度会影响半导体材料的电子状态,从而影响发光二极管的光输出。 当发光二极管被加正向偏压时,它会形成电子和空穴对。这些对在PN结中发生碰撞电离,并被推向管芯。当电子和空穴复合时,会释放出能量,这个能量以光的形式释放出来。这个过程被称为发光的载流子复合发光过程。 发光二极管导通的另一个重要因素是电流。发光二极管通常需要一定的电流才能正常工作。如果电流过小,发光二极管可能无法正常发光;如果电流过大,可能会损坏发光二极管。因此,选择适当的电流参数对于确保发光二极管正常工作至关重要。 此外,发光二极管的导通还涉及到散热问题。由于发光二极管在工作时会释放大量的热量,因此需要适当的散热器来确保发光二极管不会过热。过热可能会导致发光二极管损坏或性能下降。 总的来说,发光二极管的导通原理涉及到正向偏压、合适的温度、电流选择以及散热等方面。只有正确地理解这些因素,才能确保发光二极管在工作时能够稳定、可靠地发光。这对于使用发光二极管的各种应用,如LED灯、显示屏等至关重要。

在电子设备中,发光二极管已成为一种重要的组件,广泛应用于各种领域。无论是照明、显示还是其他需要光输出的应用,发光二极管都发挥着不可或缺的作用。通过深入了解发光二极管的导通原理,我们可以更好地理解其性能特点和应用限制,从而更好地应用它们。

总结

发光二极管的导通原理涉及到电子学和物理学的基本知识,包括正向偏压、合适的温度、电流选择以及散热等要素。通过了解这些要素,我们可以更好地使用发光二极管,并将其应用于各种电子设备中。随着电子技术的不断发展,发光二极管的应用场景也将不断扩展,它们将在未来的电子设备中发挥更加重要的作用。

七、二极管导通的是?

二极管正向导通的条件是:给与正向电压,并且大于二极管的导通电压!0.7V就是硅管的正向导通电压(锗管是约0.3V),导通后二极管两端的电压基本上保持不变。

1、二极管加外正向电压(外加反向电压不能导通的)。

2、加上的正向电压必须大于二极管的死区电压。二极管的死区电压:外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。

3、当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。当二极管两端的正向电压超过一定数值,内电场很快被削弱,特性电流迅速增长,二极管正向导通。

八、二极管导通情况?

二极管正向导通的条件是:给与正向电压,并且大于二极管的导通电压!0.7V就是硅管的正向导通电压(锗管是约0.3V),导通后二极管两端的电压基本上保持不变。

1、二极管加外正向电压(外加反向电压不能导通的)。

2、加上的正向电压必须大于二极管的死区电压。二极管的死区电压:外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。

3、当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。当二极管两端的正向电压超过一定数值,内电场很快被削弱,特性电流迅速增长,二极管正向导通。

九、二极管导通规律?

二极管的导通原则包括:正极管导通原则:在某一瞬间,正极电位最高者导通,因为正极电位最高的二极管导通后,就是另两只二极管的负极电位高于正极而不能导通。

负极导通原则:在某一瞬间,负极电位最低者导通,因为该二极管导通后,就使另外两只二极管的正极电位低于负极电位而不导通。

十、二极管不能导通?

二极管导通的条件是PN结加正向电压且锗管加大于0.3V,硅管加大于0.7∨的电压。若低于该电压,二极管也不会导通。

二极管加反向电压时,二极管就截止不会导通。

但是加反向电压是有一定限制的。超过一定的电压,二极管就会被击穿,这样二极管就会坏掉。

热门文章